

192275 NZM H3-PX400-TAZ-AVE

Overview

Specifications

Resources

DELIVERY PROGRAM

Delivery program

Product range Orcuit-breaker

Technical data

Design verification as per IEC/EN 61439

Protective function

Systems, cable, selectivity and generator

protection

Earth-fault protection Zone selectivity

ARVS maintenance mode

Technical data ETIM 7.0

Standard/Approval

IEC

Characteristics

Installation type Withdrawable

Dimensions

Release system Bectronic release

Construction size

NZM3

Description
LSIG overload protection and delayed and non-delayed short-circuit protective device, earth-fault protection
Class 1 energy measurement, r.ms. value measurement, and "thermal memory"
USB interface for configuration and test function with Power Xpert Protection Manager software Zone selectivity ZSI
Maintenance Mode ARWS
Interface module in equipment supplied.
Optionally communication-capable with internal

Number of poles 3 pole

Modbus RTU module or CAM

Standard equipment Screw connection

Switching capacity

 $400/415 \text{ V } 50 \text{ Hz } [l_{cu}]$ 150 kA

Rated current = rated uninterrupted current $[I_n = I_u]$

Rated current = rated uninterrupted current $[I_n = I_u]$ 400 A

Setting range

Overload trip
[I_r]
160 - 400 A

Short-circuit releases $[l_{rm}]$ Non-delayed $[l_i = l_n \times ...]$ 2-12

Short-circuit releases $[l_{km}]$ Delayed $[l_{kd} = l_k \times ...]$ $[l_{kd} = l_k \times ...]$

Setting range of earth fault release min. [lg = lnx...] 80

Setting range of earth fault release max. [Ig = Inx...] 400

TECHNICAL DATA

General

Standards IEC/EN 60947

Protection against direct contact Finger and back of hand proof to VDE 0106 Part 100

Climatic proofing
Damp heat, constant, to IEC 60068-2-78
Damp heat, cyclic, to IEC 60068-2-30

Ambient temperature Ambient temperature, storage - 40 - + 70 °C

Ambient temperature Operation -25 - +70 °C

Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 20 (half-sinusoidal shock 20 ms) g

Safe isolation to EN 61140 Between auxiliary contacts and main contacts 500 V AC

Safe isolation to EN 61140 between the auxiliary contacts 300 V AC

Mounting position

Vertical and 90° in all directions

With XFI earth-fault release:

- NZM1, N1, NZM2, N2: vertical and 90° in all directions

with plug-in unit

- NZM1, N1, NZM2, N2: vertical, 90° right/left

with withdrawable unit:

- NZNB, N3: vertical, 90° right/left
- NZM4, N4: vertical

with remote operator:

- NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions

Direction of incoming supply as required

Degree of protection
Device
In the operating controls area: IP20 (basic degree of protection)

Degree of protection
Enclosures
With insulating surround: IP40
With door coupling rotary handle: IP66

Degree of protection Terminations Tunnel terminal: IP10 Phase isolator and strip terminal: IP00

Other technical data (sheet catalogue)
Weight
Temperature dependency, Derating
Effective power loss

Circuit-breakers

Rated current = rated uninterrupted current [$I_n = I_u$] 400 A

Rated surge voltage invariability [U_{mp}] Main contacts 8000 V

Rated surge voltage invariability $[U_{imp}]$

Auxiliary contacts 6000 V Rated operational voltage [U_e] 690 V AC Overvoltage category/pollution degree Rated insulation voltage [Ui] 690 V Use in unearthed supply systems □ 690 V **Switching capacity** Rated short-circuit making capacity [I_{cm}] 240 V [l_{cm}] 330 kA Rated short-circuit making capacity [I_{cm}] 400/415 V [l_{cm}] 330 kA Rated short-circuit making capacity $\left[I_{cm}\right]$ 440 V 50/60 Hz [l_{cm}] 286 kA Rated short-circuit making capacity $\left[I_{cm}\right]$ 525 V 50/60 Hz [l_{cm}] 143 kA Rated short-circuit making capacity [I_{cm}] 690 V 50/60 H[lc] 74 kA Rated short-circuit breaking capacity $I_{cn}\left[I_{cn}\right]$ Icu to IEC/EN 60947 test cycle O-t-CO [Icu] 240 V 50/60 Hz [l_{cu}] 150 kA Rated short-circuit breaking capacity $I_{cn}[I_{cn}]$ Icu to IEC/EN 60947 test cycle O-t-CO [Icu] $400/415 \ V \ 50/60 \ Hz \ [l_{cu} \]$

150 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 440 V 50/60 Hz [l_{cu}] 130 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 525 V 50/60 Hz [l_{cu}] 65 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 690 V 50/60 Hz [l_{cu}] 35 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-OO-t-OO [lcs] 240 V 50/60 Hz [l_{cs}] 150 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 400/415 V 50/60 Hz [l_{cs}] 150 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 440 V 50/60 Hz [l_{cs}] 130 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-OO-t-OO [lcs] 525 V 50/60 Hz [l_{cs}] 33 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-OO-t-OO [lcs] 690 V 50/60 Hz [l_{cs}] 9 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit-breaker.

Rated short-time withstand current $t = 0.3 \text{ s } [l_{\text{sw}}]$ 3.3 kA

Rated short-time withstand current $t = 1 \text{ s } [I_{\text{cw}}]$ 3.3 kA

Utilization category to IEC/EN 60947-2 A

Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) [Operations] 15000

Lifespan, electrical AC-1 400 V 50/60 Hz [Operations] 5000

Lifespan, electrical AC-1 415 V 50/60 Hz [Operations] 5000

Lifespan, electrical AC-1 690 V 50/60 Hz [Operations] 3000

Lifespan, electrical Max. operating frequency 60 Ops/h

Total break time at short-circuit < 10 ms

Terminal capacity

Standard equipment Screw connection

Accessories required NZMB-XAVS

Optional accessories Box terminal Tunnel terminal connection on rear Round copper conductor Box terminal Solid 2 x 16 mm²

Round copper conductor Box terminal Stranded 1 x (35 - 240) 2 x (25-120) mm²

Round copper conductor Tunnel terminal Solid 1 x 16 mm²

Round copper conductor Tunnel terminal Stranded 1-hole 1 x (16 - 185) mm²

Round copper conductor
Bolt terminal and rear-side connection
Direct on the switch
Solid
1 x 16
2 x 16 mm²

Round copper conductor
Bolt terminal and rear-side connection
Direct on the switch
Stranded
1 x (25 - 240)
2 x (25 - 240) mm²

Round copper conductor
Bolt terminal and rear-side connection
Connection width extension
Connection width extension
2 x 300 mm²

Al circular conductor Tunnel terminal Solid 1 x 16 mm²

Al circular conductor Tunnel terminal Stranded Stranded 1 x (25 - 185) ²⁾ mm² Al circular conductor Tunnel terminal Stranded Double hole 1 x (50 - 240) 2 x (50 - 240) mm²

Al circular conductor Tunnel terminal Stranded ²⁾ Up to 240 mm² can be connected depending on the cable manufacturer.

Qu strip (number of segments x width x segment thickness)
Box terminal [min.]
6 x 16 x 0.8 mm

Ou strip (number of segments x width x segment thickness)

Box terminal [max.]

10 x 24 x 1.0

+ 5 x 24 x 1.0

(2 x) 8 x 24 x 1.0 mm

Ou strip (number of segments x width x segment thickness)

Bolt terminal and rear-side connection

Flat copper strip, with holes [min.]

6 x 16 x 0.8 mm

Ou strip (number of segments x width x segment thickness)

Bolt terminal and rear-side connection

Flat copper strip, with holes [max.] $10 \times 32 \times 1.0 + 5 \times 32 \times 1.0 \text{ mm}$

Ou strip (number of segments x width x segment thickness)

Bolt terminal and rear-side connection

Connection width extension

(2 x) 10 x 50 x 1.0 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Screw connection M10

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [min.] Copper busbar (width x thickness) [mm]
Bolt terminal and rear-side connection
Direct on the switch [max.]
30 x 10
+ 30 x 5 mm

Copper busbar (width x thickness) [mm]
Bolt terminal and rear-side connection
Connection width extension
Connection width extension [max.]
2 x (10 x 50) mm

Control cables 1 x (0.75 - 2.5) 2 x (0.75 - 1.5) mm²

DESIGN VERIFICATION AS PER IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation [I_n] 400 A

Equipment heat dissipation, current-dependent $[P_{id}] \\ 48\,W$

Operating ambient temperature min. -25 °C

Operating ambient temperature max. +70 °C

IEC/EN 61439 design verification

10.2 Strength of materials and parts10.2.2 Corrosion resistanceMeets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.1 Verification of thermal stability of

enclosures

Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.2 Verification of resistance of insulating materials to normal heat Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.4 Resistance to ultra-violet (UV) radiation Meets the product standard's requirements.

10.2 Strength of materials and parts10.2.5 LiftingDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.6 Mechanical impactDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.7 InscriptionsMeets the product standard's requirements.

10.3 Degree of protection of ASSEVBLIES Does not apply, since the entire switchgear needs to be evaluated.

10.4 Clearances and creepage distances Meets the product standard's requirements.

10.5 Protection against electric shock
Does not apply, since the entire switchgear needs
to be evaluated.

10.6 Incorporation of switching devices and components

Does not apply, since the entire switchgear needs to be evaluated.

10.7 Internal electrical circuits and connections

Is the panel builder's responsibility.

10.8 Connections for external conductors Is the panel builder's responsibility.

10.9 Insulation properties 10.9.2 Power-frequency electric strength Is the panel builder's responsibility.

10.9 Insulation properties10.9.3 Impulse withstand voltageIs the panel builder's responsibility.

10.9 Insulation properties10.9.4 Testing of enclosures made of insulating materialIs the panel builder's responsibility.

10.10 Temperature rise
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

10.11 Short-circuit rating Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.12 Electromagnetic compatibility Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.13 Mechanical function

The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

TECHNICAL DATA ETIM 7.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)

Bectric engineering, automation, process control engineering / Low-voltage switch technology / Orcuit breaker (LV < 1 kV) / Orcuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

Rated permanent current lu 400 A
Rated voltage 690 - 690 V
Rated short-circuit breaking capacity Icu at 400 V, 50 Hz 150 kA
Overload release current setting 160 - 400 A
Adjustment range short-term delayed short-circuit release 2 - 10 A
Adjustment range undelayed short-circuit release 2 - 12 A
Integrated earth fault protection Yes
Type of electrical connection of main circuit Other
Device construction Built-in device slide-in technique (withdrawable)
Suitable for DIN rail (top hat rail) mounting No
DIN rail (top hat rail) mounting optional No
Number of auxiliary contacts as normally closed contact 0
Number of auxiliary contacts as normally open contact 0

contact 0 With switched-off indicator With under voltage release Number of poles Position of connection for main current circuit Connection at separate chassis part Type of control element Rocker lever Complete device with protection unit Yes Motor drive integrated No Motor drive optional Yes Degree of protection (IP) IP20

CHARACTERISTICS

Number of auxiliary contacts as change-over

Characteristic curve

Let-through current

Let-through energy

DIMENSIONS

Imprint | Privacy Policy | Legal Disclaimer | Terms and Conditions © 2021 by Eaton Industries GmbH